Einige der gegenwärtigen Mitglieder der Forschungsgruppe "Thermodynamische Modellierung und Analyse von Phasenübergängen" waren früher Mitglieder einer ehemaligen Gruppe bzw. der FG 1. Die entsprechenden Publikationen sind daher bei den Publikationen dieser Gruppen zu finden:

  • ehemalige Nachwuchswissenschaftlerinnengruppe "Modellierung von Schädigungsprozessen"
  • ehemalige Leibnizgruppe "Mathematische Modelle für Lithium-Ionen-Batterien"
  • Forschungsgruppe 1 "Partielle Differentialgleichungen"
    • Artikel in Referierten Journalen

      • M. Landstorfer, B. Prifling, V. Schmidt, Mesh generation for periodic 3D microstructure models and computation of effective properties, Journal of Computational Physics, 431 (2021), pp. 110071/1--110071/20 (published online on 23.12.2020), DOI .
        Understanding and optimizing effective properties of porous functional materials, such as permeability or conductivity, is one of the main goals of materials science research with numerous applications. For this purpose, understanding the underlying 3D microstructure is crucial since it is well known that the materials? morphology has an significant impact on their effective properties. Because tomographic imaging is expensive in time and costs, stochastic microstructure modeling is a valuable tool for virtual materials testing, where a large number of realistic 3D microstructures can be generated and used as geometry input for spatially-resolved numerical simulations. Since the vast majority of numerical simulations is based on solving differential equations, it is essential to have fast and robust methods for generating high-quality volume meshes for the geometrically complex microstructure domains. The present paper introduces a novel method for generating volume-meshes with periodic boundary conditions based on an analytical representation of the 3D microstructure using spherical harmonics. Due to its generality, the present method is applicable to many scientific areas. In particular, we present some numerical examples with applications to battery research by making use of an already existing stochastic 3D microstructure model that has been calibrated to eight differently compacted cathodes.

      • M.G. Hennessy, A. Münch, B. Wagner, Phase separation in swelling and deswelling hydrogels with a free boundary, Physical Review E. Statistical, Nonlinear, and Soft Matter Physics, 101 (2020), pp. 032501/1--032501/14, DOI 10.1103/PhysRevE.101.032501 .
        We present a full kinetic model of a hydrogel that undergoes phase separation during swelling and deswelling. The model accounts for the interfacial energy of coexisting phases, finite strain of the polymer network, andsolvent transport across free boundaries. For the geometry of an initially dry layer bonded to a rigid substrate,the model predicts that forcing solvent into the gel at a fixed rate can induce a volume phase transition, whichgives rise to coexisting phases with different degrees of swelling, in systems where this cannot occur in the free-swelling case. While a nonzero shear modulus assists in the propagation of the transition front separating thesephases in the driven-swelling case, increasing it beyond a critical threshold suppresses its formation. Quenchinga swollen hydrogel induces spinodal decomposition, which produces several highly localized, highly swollenphases which coarsen and are then ejected from free boundary. The wealth of dynamic scenarios of this systemis discussed using phase-plane analysis and numerical solutions in a one-dimensional setting.

      • J. Fuhrmann, M. Landstorfer, R. Müller, Modeling polycrystalline electrode-electrolyte interfaces: The differential capacitance, Journal of The Electrochemical Society, 167 (2020), pp. 106512/1--106512/15, DOI 10.1149/1945-7111/ab9cca .
        We present and analyze a model for polycrystalline electrode surfaces based on an improved continuum model that takes finite ion size and solvation into account. The numerical simulation of finite size facet patterns allows to study two limiting cases: While for facet size diameter $d^facet to 0$ we get the typical capacitance of a spatially homogeneous but possible amorphous or liquid surface, in the limit $L^Debye << d^facet$ , an ensemble of non-interacting single crystal surfaces is approached. Already for moderate size of the facet diameters, the capacitance is remarkably well approximated by the classical approach of adding the single crystal capacities of the contributing facets weighted by their respective surface fraction. As a consequence, the potential of zero charge is not necessarily attained at a local minimum of capacitance, but might be located at a local capacitance maximum instead. Moreover, the results show that surface roughness can be accurately taken into account by multiplication of the ideally flat polycrystalline surface capacitance with a single factor. In particular, we find that the influence of the actual geometry of the facet pattern in negligible and our theory opens the way to a stochastic description of complex real polycrystal surfaces.

      • O. Klein, D. Davino, C. Visone, On forward and inverse uncertainty quantification for models involving hysteresis operators, Mathematical Modelling of Natural Phenomena, 15 (2020), pp. 53/1--53/19, DOI .
        Parameters within hysteresis operators modeling real world objects have to be identified from measurements and are therefore subject to corresponding errors. To investigate the influence of these errors, the methods of Uncertainty Quantification (UQ) are applied.

      Preprints, Reports, Technical Reports

      • G.L. Celora, M.G. Hennessy, A. Münch, B. Wagner, S.L. Waters, A kinetic model of a polyelectrolyte gel undergoing phase separation, Preprint no. 2802, WIAS, Berlin, 2020, DOI 10.20347/WIAS.PREPRINT.2802 .
        Abstract, PDF (2799 kByte)
        In this study we use non-equilibrium thermodynamics to systematically derive a phase-field model of a polyelectrolyte gel coupled to a thermodynamically consistent model for the salt solution surrounding the gel. The governing equations for the gel account for the free energy of the internal interfaces which form upon phase separation, as well as finite elasticity and multi-component transport. The fully time-dependent model describes the evolution of small changes in the mobile ion concentrations and follows their impact on the large-scale solvent flux and the emergence of long-time pattern formation in the gel. We observe a strong acceleration of the evolution of the free surface when the volume phase transition sets in, as well as the triggering of spinodal decomposition that leads to strong inhomogeneities in the lateral stresses, potentially leading to experimentally visible patterns.

      • M.G. Hennessy, G.L. Celora, A. Münch, S.L. Waters, B. Wagner, Asymptotic study of the electric double layer at the interface of apolyelectrolyte gel and solvent bath, Preprint no. 2751, WIAS, Berlin, 2020, DOI 10.20347/WIAS.PREPRINT.2751 .
        Abstract, PDF (2265 kByte)
        An asymptotic framework is developed to study electric double layers that form at the inter-face between a solvent bath and a polyelectrolyte gel that can undergo phase separation. The kinetic model for the gel accounts for the finite strain of polyelectrolyte chains, free energy ofinternal interfaces, and Stefan?Maxwell diffusion. By assuming that the thickness of the doublelayer is small compared to the typical size of the gel, matched asymptotic expansions are used toderive electroneutral models with consistent jump conditions across the gel-bath interface in two-dimensional plane-strain as well as fully three-dimensional settings. The asymptotic frameworkis then applied to cylindrical gels that undergo volume phase transitions. The analysis indicatesthat Maxwell stresses are responsible for generating large compressive hoop stresses in the double layer of the gel when it is in the collapsed state, potentially leading to localised mechanicalinstabilities that cannot occur when the gel is in the swollen state. When the energy cost of in-ternal interfaces is sufficiently weak, a sharp transition between electrically neutral and chargedregions of the gel can occur. This transition truncates the double layer and causes it to have finitethickness. Moreover, phase separation within the double layer can occur. Both of these featuresare suppressed if the energy cost of internal interfaces is sufficiently high. Thus, interfacial freeenergy plays a critical role in controlling the structure of the double layer in the gel.

      • G.L. Celora, M.G. Hennessy, A. Münch, S.L. Waters, B. Wagner, Spinodal decomposition and collapse of a polyelectrolyte gel, Preprint no. 2731, WIAS, Berlin, 2020, DOI 10.20347/WIAS.PREPRINT.2731 .
        Abstract, PDF (2259 kByte)
        The collapse of a polyelectrolyte gel in a (monovalent) salt solution is analysed using a new model that includes interfacial gradient energy to account for phase separation in the gel, finite elasticity and multicomponent transport. We carry out a linear stability analysis to determine the stable and unstable spatially homogeneous equilibrium states and how they phase separate into localized regions that eventually coarsen to a new stable state. We then investigate the problem of a collapsing gel as a response to increasing the salt concentration in the bath. A phase space analysis reveals that the collapse is obtained by a front moving through the gel that eventually ends in a new stable equilibrium. For some parameter ranges, these two routes to gel shrinking occur together.

      Vorträge, Poster

      • R. Müller, Modeling polycrystalline electrode-electrolyte interfaces: The differential capacitance (online talk), 14th Virtual Congress WCCM & ECCOMAS 2020, January 11 - 15, 2021, January 11, 2021.

      • P.-É. Druet, The free energy of incompressible fluid mixtures: An asymptotic study (online talk), TES-Seminar on Energy-based Mathematical Methods and Thermodynamics, Technische Universität Berlin WIAS Berlin, January 21, 2021.

      • B. Wagner, Pattern formation in dewetting films (online talk), Workshop ``Mathematical modeling and scientific computing: Focus on complex processes and systems'' (Online Event), November 19 - 20, 2020, Technische Universität München, November 19, 2020.

      • B. Wagner, Phase-field models of the lithiation/delithiation cycle of thin-film electrodes (online talk), Oxford Battery Modelling Symposium (Online Event), March 16 - 17, 2020, University of Oxford, UK, March 16, 2020.

      • J. Fuhrmann, C. Guhlke, M. Landstorfer, A. Linke, Ch. Merdon, R. Müller, Quality preserving numerical methods for electroosmotic flow, Einstein Semester on Energy-based mathematical methods for reactive multiphase flows: Kick-off Conference (Online Event), October 26 - 30, 2020.